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ABSTRACT 

A plasma sheath encloses a perfectly conducting cylinder with a time 

harmonic magnetic line source on its surface. The plasma sheath has an in- 

finite axial slot. A singular integral equation is formulated for the 

electric plasma current whose solution unfortunately was not found, Howevel; 

some approximations for the current of underdense plasma are suggested to 

predict the effect of the slotted plasma sheath on the cylinder radiation. 

For overdense plasma the slot may support traveling waves which transport 

power from the source to the external space. Radiation is calculated 

through a narrow parallel face slot that supports the propagation only of 

the lowest order mode. It is shown that the radiation in the forward 

direction is comparable to the case of no plasma sheath. 
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I 
IWJJRODUCTION 

In this report we consider a magnetic line source excited perfectly 

conducting cylinder radiation through a uniform plasma sheath. The fields 

are of two-dimensional nature. Taking the z-axis of a Cartesian coordinate 

system (x,y,z) coincident with the axis of the perfectly conducting cylinder 

the electric field components Ex(x,y) and Ey(x,y), and the magnetic field 

component HZ(x,y) are the only ones induced by the magnetic line source. 

As is well known the plasma sheath very strongly inhibits the radiation 

of an antenna when the plasma frequency sufficiently exceeds the frequency 

of the electromagnetic field. Opening a slot in the plasma sheath by de- 

pressing the plasma frequency below the field frequency, for example by 

material additives, may go some distance towards re-establishing some of the 

desirable antenna characteristics. Theoretically to establish some of these 

possibilities for a cylindrical configuration is the object of this report. 

In the second chapter we derive a field representation in which the 

magnetic field due to the currents induced in the plasma by the primary 

antenna field (i.e., the field without the cylindrical plasma sheath present) 

is obtained. On the basis of this representation we obtain a two-dimensional 

singular integral equation for the electric plasma current under the assump- 

tion that the current satisfies the Ohm's law. A solution of the integral 

equation was not found. However, some approximate distributions of the 

electrical plasma current are suggested for an underdense plasma sheath 

which may be used to calculate the effect of the plasma sheath (slotted and 

un-slotted) on the free space radiation. 
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When the plasma is sufficiently overdense the electromagnetic fields 

hardly penetrate the plasma sheath and hence the plasma slot may be viewed 

as a waveguide that couples the source to the free space. A parallel face 

slot then may be considered as a parallel plate plasma waveguide. The 

Transverse Magnetic (TM) modes in such a waveguide are of a type matching 

the fields of our problem. We utilize the lowest order TM mode in a slot 

centered above the magnetic line source in a plasma sheath closely fitting 

the cylinder and calculate the radiation in the free space. These deriva- 

tions and calculations are carried out in Chapter III . 

The fourth (and last) chapter presents the conclusions of the study. 

Some of the very elementary derivations are relegated to the appendices. 

The problem taken up in this report is a generalization of the one 

considered by Olte, et.al., in a 1964 Radiation Laboratory Report as well 

as in a paper by Olte (1965). In that study the slotted plasma sheath was 

considered thin, but having very high electron density, and being concentric 

with the antenna cylinder. In the analytical formulation the sheath was 

replaced by a perfectly conducting shell, thus simplifying the analytical 

difficulties to a large extent. 

In these problems the total magnetic field is entirely tangential to 

the plasma sheath, slotted or un-slotted. An electric line source (of 

course not on the surface of a perfectly conducting cylinder), replacing 

the magnetic one, g enerates an electric field entirely tangential to the 

plasma sheath. This type of polarization was considered by Olte (1965, 1966) 

in which the electric line source was at the center of a cylindrical plasma 
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sheath with infinite axial slot. 

The rationalized system of units are being used. The time dependence 

eq(jti) is being suppressed in all formulas. 
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II 

2.1 Introduction 

INTEGRAL EQUATION APPROACH 

When a plasma sheath encloses a radiating antenna the changes in the 

field result from the induced plasma current radiating in the presence of 

the antenna. When the antenna is a perfectly conducting cylinder excited 

by a magnetic line source then the induced current in the plasma sheath 

radiates in the presence of a perfectly conducting cylinder, From the 

vector Green's theorem and the magnetic Green's function of the perfectly 

conducting cylinder we derive a representation for the magnetic field 

change when the cylinder is enclosed by a cylindrical plasma sheath of 

arbitrary cross-section, but uniform density. Assuming that Ohm's law holds 

for the plasma, one obtains a two dimensional singular integral equation 

for the current of the plasma sheath. However, we could not solve it. In 

the second part of the chapter we propose some approximate representations 

for the plasma current, more or less as physical assumptions. In the case 

of a concentric cylindrical plasma sheath with a wedge slot we give the 

analytic form of the far-zone magnetic field. 

2.2 Various Integral Representations of the Fields and a Singular 
Integral Equations for the Plasma Sheath Current 

We show the configuration of the problem in Fig. 2.1. The cylinder of 

radius a is assumed to be perfectly conducting and excited by a magnetic 

line source of V volts at the position (xs,ys) of the cylinder surface, the 

time dependence ejti being suppressed. The cylinder is enclosed by a cylin- 

dricalplasma sheath of arbitrary cross-section A . The curve bounding 
P 

4 
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Magnetic line source, 

(xl, y’) 

Perfectly conducting 

C 
P 

FIG. 2.1: MAGNETIC LINE SOURCE EXCITED CYLINDER ENCLOSED BY 
A PLASMA SHEATH. 
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Ap is denoted by C 
P 

, the positive sense as indicated. We take the plasma 

conductivity to be a; permittivity and permeability are taken to be those 

of free space, respectively l o and po. 

Because a magnetic line source excites the two-dimensional structure 

we have 

fi= aZ HZ(x',y') ; @x',y')*aZ = i(x',~')e;~ = 0, P-1) 

where a 
Z 

= ax x a. . 
Y 

This special nature of the vector fields will always 

be understood in our subsequent vector calculations. The induced fields 

will satisfy the Maxwell's equations 

V' X B = - jWpo FI 

V’ X B = F + jWEo E 

i = 0, in free space, 

i =dE, in plasma. 

From (2-2) and (2-j) we have 

V'xv'xE = kzi?+vxi. 

P-2) 

P-3) 

P-4 1 

P-5 > 

(2-6) 

For the purpose of using in our derivation the two-dimensional 

vector Green's theorem, 

6 



II [fi*v'x+xH -(m) _ jIp> . Tt' xv' x ii] dx'dy' = 

A 

[#4 XV’XR - fi xv' x j$m)]. ii d.6 , P-7) 

C 

we introduce at (x,y) a magnetic line source of amplitude Im and require 

that the fields of it satisfy 

d x fitrn) = jWco gtrn) P-8) 

V' x Bern) = -jWp 
0 

fitrn) - Im ZZ8( IE-E1/ ) 

with 

a x E(m) = 
r 0 at (x' )2 t- (Y')~ = a2 . 

P-9) 

(2-10) 

-W That is to say, E and ,(m) are the fields due to a magnetic line source 

in the presence of a perfectly conducting cylinder of radius a. 

Applying (2-7) to the plasma sheath and to the free space separately 

end then adding the results, we obtain, after reducing the expressions by 

applying the boundary conditions, 

I,ii.zz = fitrn) x E . ; dl’ _ 1 
r W. 

(v' x ;).fi(m)dx9dy' 

'a A 
P 

-- fj(m)x i . f, dlf . 
P (2-11) 
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By transforming the coordinates (x', y', z') to the circular coordinate 

system (r', cp', z') the integral 

dm+x,y;xf,y') x @x',y') . a,dl' = 

'a 

2Jr 

-I 
Him)(x,y;rf Cos q3', r' Sin cp') Eq,(a,Cp') adv' . (2-12) 

0 

The tangential electric field on the surface of the cylinder due to the 

magnetic line source V is given by 

6 (cp,-0) 
EJa,cp’) = -v a 

and hence from (2-12) 

f 
j$dx g . z+ae, = V H~+x,Y;x~,Y,) 

(2-13) 

(2-h) 

From the reciprocity theorem we see that one can identify the form of 

(2-14) from (A-8), i.e. in the circular coordinate system 

+H -cm> x %a,d!' = 
m 

(0) - - COs n. ((p-rps) E HZ (r;rs). 

(2-15) 
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(0) In the subsequent discussion we will represent by HZ the magnetic 

field for no plasma sheath, i.e., r= 0. 

44 In appendix A we have already solved for H in the circular co- 

ordinate system. From (A-5) we obtain 

1 -04 = a 
k2 

IH 
0 

Z4yro c 
- HF)(kol: - ;'I) + 

m 

m 

c 
C (2) (korl)Hn (kor) Cos n 

n=O 
(2-16) 

We define a function 

G(+) = & 
c 

- Hr)(kol? - ;'() + 

w 
c 
n=O 

(korf)Hf)(kor) Cos n (cp-cp') 
3 

(2-17) 

and thus 
1 

P~oIm 
ficrn) = gz G(?;;') 

Applying (2-16) and (2-18) we re-write (2-11) as 

ii(;) = "zHLo)(';'s) - 
J 

[v' x i(?')] G(?;?) dx'dy' 

A 
P 

+ az G(?;?)i(?')~(a~ x iip) dl' . 

C 
P 

(2-18) 

P-19) 
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The first term on the r.h.s. of (2-lg), as already mentioned, is the meg- 

netic field from a magnetic line source on the perfectly conducting cylinder 

radiating in the free space. The two remaining terms come from the currents 

in the plasma induced by the primary source. In particular, the curl of the 

electric plasma current and the tangential component of the current on the 
-- 

plasma boundary contribute to the magnetic field H(r). 

We may eliminate the surface integral in (2-19) via the Stokes's 

Theorem. Substituting 

d [G(:;?)F(i?)]*(aZ x iip)dl' 

C 
P 

= x [G(?;?)T(?)]- a,dx'dy' 

= 
ilc 

v'G(;.;;.' 

A 
P 

in (2-19) we have 

) x i(E’ ) + G(+)tj x i(?) 
3 

.aZdx'dy' . 

ii(?) = ,ZHLo+;;:s) + J 0’ G(r;?') x i(i+x'dy' . 

A 
P 

Taking the curl of the last representation and noting that 

(2-20) 

(2-21) 

vx R(r) = i(r) + jwe,E(?) , from (2-3), (2-22) 

10 



(7 x [a, HL") (r;rs)] = jWo E -(')(i!;;,), from (2-8), (2-23) 

vx [v’ G(?;:‘) x r(?‘)]= 

- i(?')*v'v' G(r;?') + ivf2 G(r;r') , 

( since v=-v' )and 

P I2 G(+) = -kE G(?;;') + 6@-?'\) 

(2-24) 

(2-25 > 

we obtain atpoint (F) in the plasma 

E(E) = E(O)(F;F,) - A- jweo 
A 

P (2-26) 

If the Ohm's law holds for the plasma, then 

I(F) = vi?(r) 

and from (2-26) we obtain an integral equation 

i(F) + j$$ [i(i?)+v' + k;I(?)] G(+)dx'dy' = 
0 

A 
P rd")(;~;r ) . 

S 

(2-27) 

(2-28) 

11 



_,__._ _,,__ . . .._.-.. ---.----- ._ . . . .- . - _. . 

It is a sinmar integral equation since the integral exists only in a 

"principal value" sense. Hence any perturbation scheme in spite of the 

free term does not exist, nor is any exact solution in evidence. 

2.3 Some Approximate Solutions 

Since the integral equation (2-28) for the plasma current is not readily 

solvable we have to propose some approximate representations for the plasma 

current in order to compute the effect of the slotted plasma sheath on the 

antenna fields from (2-21). For plasma frequency sufficiently below the 

radio frequency we may take 

I(G) e ,sgo) - - (‘;‘,) > P-29 > 

i.e., the current density is the antenna electric field in the free space 

multiplied by the plasma conductivity. This approximation is equally valid 

for arbitrary plasma sheath cross-section. 

When the plasma sheath is a cylindrical shell with an axial slot a 

better approximation is possible. The basis of this approximation is the 

plasma current obtained in Appendix B for the un-slotted case of a cylindri- 

cal plasma sheath that is concentric with the antenna cylinder. In vector 

form we denote this current by 

To(F) = Zrir(r,(p) + 5 i (r,cp) 
cp cp (2-30) 

where (B-12) and (B-lo), respectively, define the scalar components of the 

current. This current can be used to predict the field for arbitrary slot 

12 



cross-section As. It is convenient then to transform (2-21) so that the 

integral is over As. Thus since 

B(E) c az H;')(:;r,) + 
II 

f?' G(;;:') x io(")dx'dy' - 

Hp+As 

J v’ G(;;?) x io(;')&c'dy' (Z-31) 

A 
S 

and letting 

j$P) (i$; 
S 

) = ii H(')(;;: z z S 
) - v' G(:;:') x io(,')dx'dy' 

AP+A 
(Z-32) 

S 

we obtain 

S 
) - v' G(;;;') x io(?)dx'dy' . 

AS 

Notice that R(') (?;rs) is the magnetic field for the unslotted cylindrical 

plasma sheath. It is given explicitly in a scalar form in (B-14) for r>c, 

i.e., external to the plasma sheath. 

For a wedge type slot we can carry out the integration in the cp-direc- 

tion. For this purpose we write (2-33) in a scalar form 

H,(G) e ,(p)( :;Fs) + Hk")(;;? 
S 

) 

13 
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where 

H;")(- r;rs)gz = - 
// 

v'G(?;?') x io(")Wdy' 

AS 

For the far-zone,we obtain from (B-14) that 

H~p+~;~s) N :w;;;vb 
II a 

0 

and from (2-35) that for a 

ad 

-ii@,-@) 
c 

c jm &m 
m 0 'OS m(V-Vs> 

m=o m 

wedge slot of width 2cp, 

(2-35) 

(2-36) 

HLs)(- - 'PJ b T 'age-j(kor-n/4) 
0 

4ac ov cH 99 

+ n2k2c ab cc (2-37 > 
0 m=l n=l 

where 

Rc2) = 
ml 

C 

(ab Am)-l 
I 

[NmJA(kr)-MmN;(kr)][J;(kor)- 
J; (k,a) 

HF)' (kor)] rdr, 
b H(? '(k,a) 

(2-38) 

R(l) = 
nm 

-1 c 
4 

rNmJm(kr)-MmNm(krjJ[-Jn(kor)+ $ , 

b 
e-391 

14 



In (2-37) the firstterm arises from a circumferential current in the plasma 

slot, and the second term from a radial current. As 'po+ 0 we clearly see 

that HZ (4 (r;q+O. In the plasma slot we are assuming zero electron 

density, however, and hence the total electron current must be zero. The 

plasma slot current in (2-35) is the negative of the plasma sheath current 

without a slot, and thus when added to the latter produces zero electron 

current in the slot. 

In other words, the first term on the right-hand-side of (2-34) is the 

magnetic field when the cylinder is enclosed by a continuous cylindrical 

plasma sheath. We can imagine that in the area where we want to create a 

slot we reduce the electron current to zero by adding there a current neg- 

ative to that of the continuous plasma sheath. This current in the pres- 

ence of a perfectly conducting cylinder gives rise to the second term on 

the right-hand-side of (2-34). This term acts as a source on the slotted 

plasma sheath and produces a new current there which has to be found in 

order to find H,(r) exactly. However, this leads to en integral equation 

that is not expected simpler in form than the basic one in (2-28). 

The approximation (2-29) and (2-30) for the plasma current are ex- 

pected to hold for underdense plasma (U>wp). For overdense plasma 

15 



(w<Wp) the approximations may be appropriate only for slightly overdense 

case and large collision frequency. Because G(r;r') is the Green's 

function for the cylinder in the free space the representation (2-21) in- 

sures that for any approximate plasma‘current the fields automatically 

satisfy the boundary conditions at the cylinder and at infinity. 

However, only for the proper plasma current will the fields satisfy the 

boundary condition at the plasma sheath surface as well. 

No doubt one may propose other approximations for the plasma current 

and carry out a series of calculations to study the effects of the under- 

dense plasma sheath of various configurations on the cylindrical antenna. 

Lack of time prevents us to pursue these ideas for the present. 

16 



III 

3.1 Introduction 

WAVXGTJIDE APPROACH 

When the plasma sheath enclosing the antenna is of a substantialthick- 

ness ih is well known that for the signal frequency w sufficiently less than 

the plasma frequency Wp negligible amount of power leaks through the sheath. 

Under these conditions if one opens a slot in the plasma sheath then it ap- 

pears that the slot will act as a waveguide in transporting the power from 

the source to the outside free space. The waveguide transports the power via 

the propagating modes, if any exist. If only non-propagating modes exist, 

then the power transfer is very minimal because the fields attenuate expon- 

entially in the guide. The plasma waveguide concept is of any use only when 

the electrical current does not penetrate the plasma sheath very much. This 

condition is satisfied where W P is sufficiently larger than w. For this 

condition the integral equation approach to the problem becomes too un- 

wieldy. 

In the first part of this chapter we derive the tranverse magnetic 

modes in an infinite parallel plane plasma waveguide. The waveguide is 

formed by an infinite uniform plasma slab of plasma frequency sufficiently 

below w while in the rest of the space the plasma frequency is sufficiently 

above w. The mode derivation is elementary, except for finding the eigen- 

values which is essentially a numerical job, except for some special cases 

when good approximate solutions are obtainable. 

17 



In the second part of the chapter, as an example, we consider a mag- 

netic line source excited perfectly conducting cylinder enclosed by a 

closely fitting plasma sheath. We assume that a parallel face plasma slot 

is centered directly above the source and forms a parallel plate plasma 

waveguide. We select the waveguide width and the plasma parameters such 

as to make only the lower TM mode propagating. We compute the amplitude 

of the mode, and assuming the mode radiates without appreciable reflection 

at the external waveguide aperture, we are able to predict the magnetic 

line source excited perfectly conducting cylinder radiation through axially 

slotted plasma sheath of a particular configuration. 

3.2 Transverse Magnetic Modes in a Parallel Plane Plasma Waveguide. 

The waveguide is formed by two semi-infinite plasma slabs of uniform 

density separated a distance 2d and the gap filled by a lower density plas- 

ma. We introduce a Cartesian coordinate system (x,y,z) with the y-axis 

normalto the plasma slabs and the origin at the half way point between 

them, as shown in Figure 3.1. The electrical conductivity of the plasma 

for, IYI=- d, 

2 

tr= 
EOWPJ 

v+ jW ’ (3-U 

and for -deyed, 

(3-2) 

where Up and Up ldenote the plasma frequencies; v and v1 the collision fre- 

18 
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FIG. 3.1: PARALLEL PLANE PLASMA WAVEGUIDE (z = 0 cross section). 



quencies, w the signal frequency, and e. the free space permittivity. 

Taking the free space permeability p. completes the statement on the 

electromagnetic parameters of the problem. 

The TM-modes in the parallel plane plasma waveguide have the following 

non-zero field components for propagation along the x-axis: HZ(x>~), 

Exb,~), Ey(x,~), the ejti time dependence being understood. Assuming that 

the fields have exp(-yx)dependence in x, we obtain from the Maxwell's 

equations 

and 

HZ(x,~) = - 
jW a - 

Y2+k$LoE 2 
Exb,Y) 

Ey(x,y) = - - d E (x,Y> 
y2+w2p E ay x 

0 

(3-3) 

(3-4 > 

where 

Since all the field components satisfy the scalar wave equation, we have 

Ex(x,~) = A {:I %&&v-x), y>d, (3-5 > 

= B exp(-rx), -dwd, (3-Q 

= A {TJ exe& - rx), Y< 4. (3-7) 

and 

20 



? + p .= $ (3-Q 

r2 + k2 = -8 (3-9) 

/ I 
where k IJ~(~~- jr/d , kl = w llO@O - WwL and the top line in 

the brackets refer to the symmetric mode, and the bottom line to the anti- 

symmetric mode. From (3-3) to (3-7) and the boundary conditions at 

Y= 2 d we obtain 

(3-1Oa) eKIA + ~~ K exp(Kd) B = 0 

A+ exp(Kd) B = 0. (3-lob) 

The non-trivial solution of (3-10) exists only when the determinant of the 

coefficients vanishes, i.e., 

YK - = tan(Kld) , 
'FL 

for the symmetric modes, and 

elK 
EK 1 

= - cot(Kld) 

(3-n) 

(3-12) 

for the anti-symmetric modes. Eliminating y from (3-8) to (3-g) we obtain 

21 



K= WE 
0 

112 
-e 1 (3-13) 

where k. = WJ,';;: and thus from (3-11) and (3-12) we derive, respectively, 

= -cot(Kld). (3-15) 

Introducing dimensionless parameters 

u=Kld 

kOd h=-.-; (h=d;jjo=+ 

A0 0 

x=w,/w; Y=v/W 

xl=w /w; 
Pl 

Y1=V1/W 

in the last two equations one obtains 

= tanu, 

= -cot u. 

22 
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(3-17) 

(3-18) 

(3-19) 

(3-20) 

(3-21) 



The appropriate roots uo, I+, u4, . . . of (j-20) and ul, u3, LQ., . . . of 

(3-21) determine f rom (3-16) the eigenvalues 

K&i. l (3-22) 

The corresponding Knand y, we compute by substituting (3-22) in (3-13) and 

(3-8). Thus one has to solve first for the roots of (3-20) and (3-21) before 

it is possible to exhibit explicitly the various TM modes in the parallel 

plane plasma waveguide. 

The Loss-Less Case: Y = Y, = 0. The task of finding the roots of (j-20) 

and (j-21) is largely a numerical one. Primarily for this reason we restrict 

the calculation to the loss-less case. This permits us to exhibit the main 

features of the plasma waveguide with a minimum of numerical work. The 

results would be only trivialy modified for a 

except for some special cases. 

For the loss-less case (3-20) and (3-21) 

slightly lossy plasma guide, 

become, respectively, 

l/2 

2(xy) -iJ’ = tan u, 

= -cot u. 

The plasma waveguide exists in any meaningful fashion only when 

(3-23) 

(3-24) 
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OfX,<l; x 7 1, (3-25) 

and hence in the subsequent discussion we implicitly require these inequal- 

ities to be satisfied. Fukther, a particular mode n for a given h, X, Xl 

will exist only if u n exists. In the loss-less case un is real and it can 

exist only when 

as can be deduced from (j-23) and (j-24). The equation 

(3-W 

(3-27) 

defines a boundary in the X-h plane that separates the regions of existence 

and non-existence for the TMn mode. We note that the zeroth order mode 

exists for any h, the plasma parameters X and Xl being only subject to 

(3-25 >. 

Before we introduce the numerical results it is instructive to present 

the roots un for some special cases. From (j-23) we obtain for the zeroth 

order mode 

1-G 
UN- - 

0 fihx ' X>>l' 

uo+ -Jrh q J ‘--+lJ 

-I 

h< L 
2 1-G J- 

J 

(j-284 

(3-2W 

24 



uo- - ; J x-+l J b . (3-284 

From (3-23) and (3-24)' whenever (3-26) is satisfied, we obtain for the 

higher order modes 

nn u/y- - 
n 2 g (1-x;)’ x>>lJ 

"n+ $ (n-l), X+1, 

(3-294 

(3-29b) 

with n = 1, 3, 5, . . . for the anti-symmetric modes, and n = 2, 4, 6, . . . 

for the symmetric modes. It is evident that u. is of the lowest order mode, 

u1 of the next higher order mode, etc. Furthermore, as eqected, when X-+ao 

the roots reduce to those of the perfectly conducting parallel plane guide. 

The lower order mode, TMoJ then propagates for any guide width. At times we 

shall refer to TM0 as the principal mode. 

The lowest order mode is of the most practical importance. We present 

in Figure 3.2 u. as a function of X for the guide width h = 1.0, 0.75, 0.50, 

and 0.25 fractions of the free space wavelength, and Xl = 0 and 0.75. We 

note that increasing the normalized plasma frequency Xl in the guide 

decreases the magnitude of u . However, this does not mean that the cut-off 
0 

frequency will decrease. We shall see shortly, in fact, that the opposite 

is true. 

The constant K which determines the rate of the field attenuation in 

the semi-infinite plasma slabs we compute from (3-13) for the loss-less 

case as 
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- - 

Kn= kok2 - < - (2)'1 1/2 . (3-30) 

We find from (3-8) the propagation constant 

1’2 l (3-31) 

We define 

'n = dn + jB, (3-32) 

where Hn is the attenuation constant, and @, is the phase constant; both 

constants are real and positive. The TMn mode is propagating in a loss-less 

guide when 

dn=OJ Bn=ko F-(2,‘-<I”” 

with 

+ x+J 

and beyond cut-off when 

qn = k. ; f$ = 0 J 

(3-33) 

(3-34) 

(3-35) 

with 
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U2 

(i)2 
+ Xl2 > 1 J (3-36) 

as can be shown from (3-31). Since un = un(hJXJXl) we see from (3-34) 

and (3-36) that the equation' when it exists, 

uE(h,X,Xl) = (*h)2(l-<) (3-37) 

defines a curve in the X-h pl-me that separates the propagation region 

from the non-propagation one. In Fig. 3.3 we show these curves for 

Xl= 0, 0.75, and 0.90 in the cases of TM0 and TM2 modes. We have left 

out of the discussion T Ml mode because in the particular configuration we 

consider at the end of this chapter, it is not excited by the source. The 

solid curves refer to the TM0 mode, and the dashed curves to T % mode. The 

area bounded by the coordinate axis and the solid curve is the region of 

beyond cutoff for the TM0 mode, the rest of the quadrant being the region of 

propagation. We notice that the cutoff region increases only very slightly 

as Xl increases from 0 to 0.9. However, when Xl -3 1, the TM0 mode is 

beyond cutoff for any h and X. 

The coordinate axis and the curve 

h[X2- <Ill2 = 1 (3-38) 

bound the region of non-existence of the T 52 mode. We have not plotted 

this curve in Fig. 3.3 because it would make the figure too crowded, and 

furthermore for our discussion later on this curve is not important. The 
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area between the curve (3-38) and those shown dashed in Fig. 3.3 is the 

beyond-cutoff region. The area to the right of the dashed curve is the 

propagation region. As Xl increases from 0 to 1-O the dashed curve moves to 

the right in noticeable steps, i.e., the region of propagating becomes 

significantly reduced. In fact, we may easily predict the propagation - 

beyond cutoff boundary as a function of Xl from (3-29a), and (3-37) for any 

mode, other than the zeroth, when X>> 1 , i.e., 

(3-39) 

The Modal Fields. Letting B + Kin n B we obtain from (3-3) to (j-12) TMn 

mode fields 

e-[G(y-d)+ &Ix1 , y ) d , 

= BnKln > -d<y<d, 

= BnKln 
e-[%(-Y-d)+'nxl , y( -d f 

= BnjWl 

(3-40a) 
(3-4Ob) 

(3-414 
(3-&lb) 

(3-42a) 

(3-42b) 

(3-43a) 
(3-43b) 

(3-44a) 
(3-44b) 



e-[q(-Y-d)+b-,xI (3-454 
= B jW1 

n , y( 4. (3-45b > 

The top line, in the brackets, as before,refers to the symmetric mode 

(n=0,2,4,***), and the bottom line to the anti-symmetric mode (x1=1,3,5,...). 

The electric field component Ey(x,y) can be computed for either symmetry 

from 

+%%Y) = & Hp)(x,y) , iul > d 

= &y HLn)(x,y), -d<y< d. (3-47) 

(3-W 

This completes the discussion of the TM modes in the parallel plate plasma 

waveguide. The zeroth order mode from this set is used in the calculation 

of the radiation by a slot in a plasma sheath. 

3.3 Application of the Principal Mode to the Slotted Sheath Problem. 

As an example of the application of the principal mode to the slotted 

sheath problem we consider the configuration shown in Fig. 3.4. A magnetic 

line source excited perfectly conducting cylinder of radius a in free space 

is enclosed by a plasma sheath of radius c. The plasma sheath is in a 

contact with the cylinder. The plasma sheath has uniform conductivity o-, 

except for the parallel plate plasma waveguide where the conductivity is 

5' The plasma waveguide is centered with respect to the magnetic line 

source. The free space permittivity e. and the free space permeability ~1, 

complete the specification of the electromagnetic parameters of the plasma 

sheath. 

First we obtain an external field representation (r,c) in terms of the 
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tangential electric field at r = c. The latter we approximate by the plasma 

waveguide aperture field derived from the principal mode calculations. The 

first part of this analysis is exact, the second part is approximate. 

From (2-15) and (2-18) we may show that 

For r >c we find from (2-17) that assuming a+c 

bb H(2)(k r) 
G(r,(P;C,Y)') = & C Cn w Cos n (cp-cp'). 

0 n=O Hn hoc > 

Let 

(3-48) 

(3-49) 

(3-50) 

where E. is a constant, then in the far-zone (r >> c) 

HZ(rr~) = -3 & e E. ,/s e-j(kor - n14) F(q) , (3-51) 

with n 

F(cp) = 
cn jn 

H(e) ' (koc > / 
f(V) Cos n(cp-rp')dV . 

I 
(3-52) 

-Yl 

We define the gain function of the plasma sheath slot by 

Got(P) = 1 F((p)i* 

/ 

'I[ 
1 

z -x b(d2 dcP 
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The plasma waveguide radiation we normalize with respect to the forward 

radiation in the free space of the magnetic line source excited cylinder, 

i.e., 

w(cp) q jHZ(wo of (3-53-i 2 

-IHZ(r,O) of (A-8))* ' r"a l 

It is easy to reduce (3-54) to the form 

P Gob) 
WP) = P(b Y 

(3-54) 

(3-55) 

where the power radiated through the plasma sheath, per unit length of the 

cylinder, 

25( 

P 1 HZ(w)) 2 ~WJ j r oc j 

0 

and 

P(0) = $ o 1 Hs(r,O) of (A-8));! *fir , r>)a . 

(3-56) 

(3-57) 

The latter power is computed for an omnidirectional source whose radiation 

is of the same intensity as that of the forward radiation of the magnetic 

line source excited perfectly conducting cylinder in the free space. 

The power flow (time average), per unit length, in the positive x- 

direction of the parallel face plasma waveguide for the TMn mode is given 

w 
Pn = $Re 

I 
Eyb,y) H; (x,Y)W 9 

-QI 

34 



For the loss-less case the power flow in the principal mode 

PO = WElBolBo12 ij 

- 

Sin(2uo) 

50 

+ '1; 
cos2(uo) 

e 1 25d ' (3-59) 

When the guide is only slightly lossy then the form of (Z-59) is multiplied 

bye exp [ZBo(x-a)], where a0 is the attenuation constant. Assuming that 

the principal mode radiates from the plasma waveguide aperture without 

reflections we obtain 

P=Poe -%(c-4 . (3-60) 

For the calculation of the principal mode amplitude we refer to Fig. 3.5 

which is a section of Fig. 3.4 in order to show some of the details. The 

coordinate origin also has been shifted to the right a distance a, as a 

matter of convenience for the calculation. The electric and magnetic fields 

produced by the magnetic line source satisfy 

f 
B l d? = -2-W, 

J 

Hsdxdy-V . (3-61) 

C A 

For our calculation we take the path C as shown in Fig. 3.5. The area A is 

enclosed by the path C. The electric field for x> 0 in the plasma slot may 

be represented by infinite series of terms (3-47). No such eqansion is 

possible in area A which is bounded by the cylinder, the y-axis, and the 

guide walls. Thus we obtain from (3-61) 
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FIG. 3.5: CONFIGURATION FOR THE CALCULATION OF THE PRINCIPAL MODE 
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-x 

-1 

Sin(u,) 
Bn% 2d (u,) + 

4 i 

0 

[E,(x,d)-E,(x,-d)]dx = 

even 0 

-jw, H&~)*dy - V (3-62) 

where x =a- a Cos[arc sin a . % 
0 

When the plasma sheath conductivity r, and the cylinder radius a are 

sufficiently large we may neglect the two integrals, as well as all the terms 

in the series, except the zeroth term, i.e., 

BorJ &i 
bo> 

0 
sin(uo) l 

(3-63) 

This result becomes exact when \tiI 4 00, a j CQ. 

The result (3-63) will not be altered when the magnetic line source is 

moved to any position on the cylinder surface, inside the guide walls. Only 

symmetric TMn modes(n-even)will be excited when the source is in the symme- 

tric position shown; anti-symmetric modes in addition will be excited when 

the source is moved off the x-axis. 

From (3-47) and (3-50) we see that the plasma slot aperture field 

distribution 

f (cp) 2 Cos (K1#p), cp g y/c . 
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This approximate form should hold for the plasma slot width hE 0.5; certain- 

ly as far as the gain function calculation is concerned, For sufficiently 

large conductivity of the plasma sheath one may take f(cp)dO on the plasma 

sheath surface. Thus we find 

3-c 
/ 

‘PO 

f(cp') Cos n(cp-cp') dq' e Cos(KlOc(p') Cos n(cp-cpl)dqV = 

-II 
-00 

Toan Cos n cp 

where 

'p, = arc sin (fl j+$ = d arcsin (--) , 
0 

Sin(u;- n)qo Sin(u; + n)qo 
a = n <u:, IOf -ncp % 

Y 
+ n 9, 

andu' = uoc u 0 koC 
0 

d=F h. 

Substituting (3-65) in (j-52) and the resulting equation in (3-53) we 

2 obtain 

Go(v) N 

00 
c. 

an c0sb-d 
n=O 

%J” wl(k 
0 

od 

c I 

a 2 

n=O cn & 

. (3-68) 

(3-65) 

(3-W 

(3-67) 

We observe that the gain functions of the magnetic line source excited 

perfectly conducting cylinder is obtained from (3-68) by letting an + 1, 

and c -+a. This result is exact. 
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For sufficiently high plasma conductivity V One may neglect the third 

term in (3-59) and then substituting (3-63) in (3-59) we obtain 

From (3-57) we find 

00 cn jn 
2 

c 0 
n=O Hn2 

and hence 

b + “yj (si:u 
2O 

) 
00 .n 

c 
'n J 

IYI(~)'(~~~) n=O n 

From (3-55) and (3-60) we have 

-2ao(c-a) Go(q) , 

For loss-less plasma, as can be shown from (3-71), we may set the 

(koa)*(l-Xf) 

h[l-(k)*- X;]'/' 

Sin 2u 2 

[l+ 2~ ol(si>u > 
0 0 

2 * 00 

c 

cn jn 

Jqig \n=O n 

(3-W 

(3-70) 

(3-71) 

(3-72) 

factor 

(3-73) 
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In Fig. 3.6 we have plotted from (3-73) the normalized power coupled 

from the magnetic line source into the parallel plate plasma waveguide 

principal mode as a function of the normalized plasma frequency X. This 

power is the same as the power coupled into the waveguide, because only the 

principal mode is propagating for the parameter values under consideration, 

namely h = 0.25, 0.5; and xl = 0, 0.75, 0.9. The coupling curves are essen- 

tially flat for X)4, and increasing for X> 4 as a consequence of u. in- 

creasing. When X + 1, the approximation of (3-73) becomes seriously 

questionable. Decreasing the guide width from h=0.5 to h=O.25 increases 

the power coupled into the guide approximately by a factor of two as can be 

seen from the graphs, and can also be verified by inspection of (3-73), 

assuming that u. did not change appreciably. Increasing the plasma frequency 

in the guide Xl, however, decreases the power coupled into the guide. In 

the limit of Xl -3 1 we would have zero power coupling. This behaviour be- 

comes obvious also if we consider the characteristic impedance of the plasma 

waveguide for the principal mode. We may show that for large X the charac- 

teristic impedance 

r 
u. 2 - X2]V2 

z =2Y$ y$ [l- cid 1 
0 

0 Cl- <I 
(3-74 > 

and the power coupled into the guide of unit width is not normalized). 

The behaviour of the graphs in Fig. 3.6 then follows: decreasing h reduces 

Z. and hence increases the power coupling; increasing Xl produces an in- 

crease in Z. and hence a decrease in power coupling. Further we have to 

add that according to (3-73) PdP(O) is real when the TM0 mode is propagating 
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and imaginary when the mode is beyond-cutoff. At the cutoff we have spurious 

singularity. 

Since the plasma is loss-less and in addition the parameters are such 

that the principal mode is propagating we have that a = 0, and hence 
0 

exp[2Uo(c-b)] = 1. 

The last factor in (3-72) is the gain function Go(q) of the axial slot 

excited cylinder of radius c. The axial slot is excited by the principal 

mode (TMo-mode) of the parallel plate plasma waveguide. We show Go(~) in 

Fig. 3.7 for the case of koc = 47~; Y = Yl = Xl = 0; X = 4 and h = 0.25, and 

0.50. The curves did not change for all practical purposes as X was in- 

creased to 20 and X1 to 0.9. The Go(q) calculated is symmetric with respect 

to cp = 0 and very broad and smooth in the forward direction, but with some 

lobing in the back. The smooth behaviour of the gain function for 

-120'< cpC120" results from the slot width being less than one half wave- 

length wide and the plasma sheath having insignificant leakage of power. 

A wider slot and hence a wider parallel plate plasma waveguide could support 

some higher order modes. For example the next mode above the principal one, 

TTY P reduces an anti-symmetric contribution to the aperture field and hence 

the gain function will no longer have a maximum in the forward direction, 

but off to one side, depending on the relative phasing of TM1 to TM0 mode. 

The lobing in the back arises from the surface waves which travel around 

the cylinder. The gain function calculation should be accurate in the for- 

ward semi-circle; in the back semi-circle it should be accurate for large 

X. As X tends to approach unity the surface wave characteristics are apt 

to change and hence the lobing in the back will change. 
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The radiation of the plasma slot normalized to the forward radiation 

of the cylinder antenna in the free space, W(q), are the products of 

[Gob)I [Po/p(O)I, f or the range of parameters considered. Thus in our 

case W(q) is simply a Go(q) with a change in normalization. For this 

reason we consider W(q) for cp=O, i.e., W(0). We plot W(0) as a function 

of X in Fig. 3.8 with the same parameters as for the ratio P o/P(O). The 

W(0) curves are essentially flat for X>4 and tend to peak as X + 1. 

These characteristics are due to the coupling coefficient PO/P(O). We 

observe that the radiation is re-established when the plasma guide width 

h=O.5 and X1 = 0 (no plasma in the guide). As X1 increases to 1.0 a mod- 

erate attenuation sets in, if Xl would exceed 1.0 a very severe attenuation 

would result. Decreasing the guide width by one half actually increases 

the radiations by approximately 5076. This results from a more effective 

coupling of the line source to the waveguide. However, the resulting en- 

hancement of the waveguide fields, if we narrow the waveguide width very 

much, w result in the break-down of the plasma and thus make this analysis 

inapplicable. 

When the plasma sheath is shielded from the perfectly conducting cylin- 

der by a dielectric lsyer, then the analysis to find the power coupled into 

the plasma waveguide becomes considerably more involved. Particularly so 

when the source is not facing the plasma slot. For the plasma density suf- 

ficiently large so that no direct radiation through the sheath is possible, 

an annular waveguide is formed by the dielectric between the cylinder and 

the sheath. The fields in the annular waveguide sre composed of an infinite 

set of standing waves, and at some angular positions deep minimas will result. 
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When the plasma slot is opened above such a minimum only a weak coupling of 

the power into the slot waveguide will result. Opening the slot above a 

field maximum will give large coupling. In effect this type of analysis 

was carried out by Olte(lg65) h w en the slotted plasma sheath was replaced 

by a perfectly conducting slotted shell. Extension of this type of analysis 

to the thick slotted plasma sheath remains to be done. 
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CONCLUSIONS 

The radiation through a plasma sheath of a magnetic line source excited 

cylinder of infinite conductivity is formulated using the vector Green's 

theorem and the external Green's function of the cylinder. The magnetic 

field is along the axis of the cylinder while the electric field is en- 

tirely transverse to the cylinder. A two dimensional singular integral 

equation is formulated for the plasma current, assuming it satisfies the 

Ohm's law. However, the solution of the integral equation is not readily 

obtainable. Some approximate plasma current representations are suggested, 

more or less on physical grounds, to study the effect of underdense plasma 

sheath on the cylindrical antenna radiation fields. The plasma sheath may 

contain a slot. 

For the overdense plasma sheath, provided the leakage through it may 

be neglected in comparison with the radiation through the plasma slot, we 

may introduce plasma waveguide considerations in the analysis. When some 

minimal parameter restrictions are met, the plasma slot will support prop- 

agating transverse magnetic waves. The wave analysis becomes elementary 

when the slot walls are parallel. The lower order mode then is a perturb- 

ation of the transverse electromagnetic mode. The radiation analysis is 

particularly simple when only this mode is propagating. In the above case 

we carry out the analysis for the plasma sheath closely fitting the cy- 

linder, and the parallel face plasma slot being centered above the magnetic 

line source. The calculations consider loss-less plasma, with the plasma 



slot width of l/4 and l/2 free space wavelength, and show that the radi- 

ation in the forward direction is re-established or slightly increased for 

zero plasma frequency in the slot, moderate loss is incurred as the plasma 

frequency in the slot approaches the angular field frequency. If the plas- 

ma frequency in the slot exceeds the angular field frequency, but still 

being less than the plasma frequency in the remainder of the sheath, a very 

severe attenuation of radiation will result. 

The gain function of the slot in a 4 wavelength diameter plasma sheath 

has a broad forward lobe, the 3 db points being 156” wide for l/4 wave slot 

and U.2" wide for a l/2 wave slot. The back lobes are no more than 20 db 

down from the radiation in the forward direction. The significant back 

radiation results from the surface waves that are supported by the external 

plasma sheath surface. 
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APPENDIX A 

THEFIELDS OF AMAGNETIC LINE SOURCE INTHE PRESENCE OF APERFECTLY 
CONDUCTING CYLINDER 

In this appendix we review the two dimensional problem of an axial 

magnetic line source radiation in the presence of a perfectly conducting 

cylinder of radius a, as shown in Figure A-l. The line source is located 

by coordinates (r', fit), and the field point is denoted by the coordinates 

Fig. A-l: The Configuration. 

(r,$). The z-axis of the cylindrical coordinates coincides with the perfect- 

ly conducting cylinder axis. 

Employing the rationalized MKS units and assuming ejti time dependence 

for all field quantities, one can show (for example, Harrington 1961) that 

the magnetic field from the magnetic line source in free space is given by 

,ti) = k2 
z - & Im Hr)(koj;: - ?I) 

0 
(A-1) 
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where ko = Uds, and Im is the amplitude of the magnetic current filament, 

When we consider H(i) 
Z 

as the field incident on the cylinder, then the mag- 

netic field scattered by the cylinder is denoted by 

k2 4o 
HtS) = _ t” 1 

Z (.+o m c 
anH~)(kor~)H~)(kor)e'n(~-8'). 

n=-cu (A-2 > 

Expanding the incident magnetic field by the addition theorem for the 

cylindrical functions and using the orthogonality properties of the circular 

functions, we are able to identify the unknown coefficients an from the 

boundary condition 

- $-[HLi) + HL')] = 0 at r = a (A-3) 

as 
J; (ko”) 

a n 
=-gqq l 

(A-4) 

The total magnetic field (incident end scattered) we may now write as 

k2 
HZh$> = $ Im 

0 

k //r2 + rf2 - 2rr' cos(~-~~ + 
0 

00 

c 

J$koa) 
C H(2)(korf)H~2)(kor) cos n ($-$I) (A-5 > 

n=O 

where c n = 1 for n = 0; cn = 2 for n = 1,2,3,... . 

The electric fields can be derived by differentiation from (A-5); 

they are: 

50 



E,(d) = + $ Hzh$) 

d Efi(r,lb) = - Y& - 0 a Hzh$) . 

We may place the magnetic line 

cylinder by letting r' j a. The 

simple form: 

source on the perfectly conducting 

fields then assume a particularly 

Hr)(kor) 
cos n ($ - Id') 

0 n=O cn Hol(k 

cd 
E,(r,jZ!) = - 1 2nkoa 'rn c 

;C 
Hr)(kor) 

sin n ($ - $') 

n=O 

(A-6) 

(A-7) 

w3) 

(A-9 > 

bo 

E$(r,$) = - 1 I 1 cn 
H(2)'(k,r) 

2na m HE)'(k a) 
cos n (@ - $8') . (A-10) 

n=O 0 

The exciting voltage of the cylinder is defined by 

/ 

2n 
v=- E@b$b 4 . 

0 

Substituting (10) in (11) and performing the integration, we obtain 

V=Im, 

(A-11) 

(A-12) 

and indeed magnetic current is measured in volts. 
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APPENDIX B 

CONCENTRIC PLASMA SHEATH OF UNIFORMDENSITY ENCLOSING A MAGNETIC 
LINE SOURCE EXCITED PERFECTLY CONDUCTING CYLINDER 

We consider the configuration as shown in Fig. B-l, and take the free 

space permeability p. and the free spacepermittivityeo to apply for all 

radii. The z-axis of the cylindrical coordinate system (r,cp,z) is coinci- 

dent with the perfectly conducting cylinder axis. The magnetic line source 

on the perfectly conducting cylinder surface is accounted for by 

(B-1) 

the time dependence ejw being suppressed. The field quantities are inde- 

pendent of z and hence the magnetic field may be represented by 

HZ(w) = f CAmJm(kor > + BmNm(kor > 1 ejmcp, 

m=-a0 

co = c [CmJm(b) + Dmrn(~)lejq, 
m-06 

00 

= 
c 

FmHf)(kor)ejmp, c e r, 
m=-Q 

(B-2a) 

(B-2b) 

(B-2c ) 

where k o = u\/s and k = kodm . From the Maxwell's equations 

we obtain that the electric field Er(r,cp) is given by differention of 

(B-2) according to (A-6), and the electric field E 
cp 

(r,cp) according to 

(A-7). We only note that for bercc one should substitute E = E - j $ 
0 
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Uniform density plasma sheath 
of conductivity u. 
Perfectly conducting cylinder. 

FIG. B. 1: MAGNETIC LINE SOURCE EXCITED CYLINDER ENCLOSED 
BY A PLASMA SHEATH. 
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for e. in (A-6) and (A-7). 

From (B-l) snd from the continuity of Eq(r,cp) and HZ(r,cp) at r = b,c, 

by applying the orthogonality properties of the circular functions we obtain 

Jmbob > Nm(kob > -Jm(kb) -N,(kb) 0 
c 

tiJ&( k,b) e'Nm(kob) -k'Jfm(kb) -k'N;(kb) 0 

J;tko”> N$koa> 0 0 0 

0 0 Jmh ) Nm(kc > -Xf%$ 

0 0 k'J,'(kc) k'N'(kc)-eR(2)&c) m m 0 

where k' and k/ko, and E' = 1 - j & . 
0 

We compute the determinant of (B-3) 

m 
0 

0 

jU,V e-jmQs =- 
2fik,a 

0 

0 

w 

(B-3) 

and those coefficients of interest in this study Cm, Dm, and Fm, i.e., 

Amcm = 
jwe,V 

N ,-jm% 
(rrko)2ab m 

03-5) 
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AmDm = - 
JWEoV 

(nko)2 ab 
Mm e-jqS 

2jwv 
AmFm = 

(rko)3 abc 
e-3mps 

(B-6) 

03-7) 

where 

Nm = -&Tm(kc) HE)'(koc) + k'c'N'(kc) H(2)(koc) m m 03-Q 

Mm = +12Jm(kc) Hm (2)'(koc) + k'E'J;(kc) Hf)(k,", . (B-9 > 

We compute the cp- component of electric current density in the plasma, 

crkcz 
OV 

00 

= ("ko)2 c ab c 
cm If' (4 Cos m (cp-cp,) (B-10) 

Ill=0 

where 

IF)(r) = [-NmJi(kr) + sNi(kr)]Ai' , 

and the r-components of electric current density, 

irh’P) = 0 Er(r,d 

iPuG V m 

c 
m I(r)(r) Sin m (cp-cp,) , 

= (dko)2r ab 111=1 r m 

(B-11) 

(B-I-2) 
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where 

I;'(r) = [NmJm(k.r) - MmNm(kr)] Ai1 . 03-13 > 

The magnetic field outside the plasma sheath, r> c, 

2jWSV w 
Hz(w) = c 

2 Hm 
(kko)3abc m=. 'rn 

(2)(kor) ~0s m (cp-cp,) . (B-14) 
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